
Geometric Approach to Segmentation and Protein

Localization in Cell Culture Assays

S. Raman, C.A. Maxwell, M.H. Barcellos-Hoff, and B. Parvin

sraman@lbl.gov parvin@media.lbl.gov ∗

August 1, 2006

Abstract

Cell-based fluorescence imaging assays are heterogeneous and require the collection of a large num-

ber of images for detailed quantitative analysis. Complexities arise as a result of variation in spatial

nonuniformity, shape, overlapping compartments, and scale (size). A new technique and methodology

has been developed and tested for delineating subcellular morphology and partitioning overlapping

compartments at multiple scales. This system is packaged as an integrated software platform for

quantifying images that are obtained through fluorescence microscopy. Proposed methods are model-

based, leveraging geometric shape properties of subcellular compartments and corresponding protein

localization. From the morphological perspective, convexity constraint is imposed to delineate and

partition nuclear compartments. From the protein localization perspective, radial symmetry is im-

posed to localize punctate protein events at sub-micron resolution. Convexity constraint is imposed

against boundary information, which are extracted through a combination of zero-crossing and gra-

dient operator. If the convexity constraint fails for the boundary then positive curvature maxima are
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localized along the contour and the entire blob is partitioned into disjointed convex objects repre-

senting individual nuclear compartment, by enforcing geometric constraints. Nuclear compartments

provide the context for protein localization, which may be diffuse or punctate. Punctate signal are

localized through iterative voting and radial symmetries for improved reliability and robustness. The

technique has been tested against 196 images that were generated to study centrosome abnormalities.

Corresponding computed representations are compared against manual counts for validation.

1 Introduction

The response of tissues and biological material in general to exogenous stimuli is often heterogeneous and

requires a large set of samples for each experimental variable, e.g., tissue type, type of stimuli, dosage,

and concentration. These responses are often multidimensional and multispectral and can be imaged

using different types of microscopy. Quantitative analysis of these responses is a necessary step toward

visualization of large scale co-localization studies and construction of predictive models. Research in this

area has spanned from learning techniques using texture-based features for characterizing patterns of

protein expression (Murphy, 2004) to geometric techniques using nonlinear diffusion (Malladi & Sethian,

1996; Yang & Parvin, 2003), curve evolution, and shape regularization for segmentation of subcellular

compartments (Solorzano et al., 2001, Yang & Parvin, 2003; Parvin et al., 2003), and often segmentation

provides context for quantifying protein expression. However, when protein expression is not diffused

within a compartment, additional processing is needed within the specific context. This paper outlines

a complete methodology and its evaluation for quantitative assessment of co-localization studies in cell

culture assays. Although the technique has been tested against studying centrosomal abnormalities (CA),

it is extensible to other phenotypic studies. As CA occur in less than 2% of normal tissue and in about

80% of breast cancers (Salisbury et al., 2004). CA may serve as valuable prognostic and therapeutic

targets. Various cellular stresses, such as viral infection, exposure to ionizing radiation and altered
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microenvironmental stimuli, can augment the frequency and type of CA (Salisbury, 2001). Within resting

animal cells, the centrosome represents a major microtubule organizing center and is composed of a pair

of centrosomes and pericentriolar material. Prior to division, the centrosome will replicate during the

DNA synthesis phase of the cell cycle. During mitosis, replicated centrosomes will separate and nucleate a

bipolar spindle that equally contacts and segregates the replicated genetic information into two daughter

cells. One facet of CA refers to additional centrosomes (more than two), which leads to abnormal cell

division. As CA are rare events in cell culture assays, large numbers of samples within and between

treatment groups must be analyzed for objective results. Complexities arise as a result of nonuniform

staining, overlapping nuclei, touching centrioles, and scales (size) of these subcellular compartments. In

the proposed system, these complexities are addressed through model-based techniques that are driven

by the inherent geometries. These geometric constraints take advantage of the convexity features of

the nuclear compartment and the radial symmetry of the centrosome. Nuclear extraction is initiated

from differential spatial operators as opposed to intensity thresholding, which is a common practice in

most ad-hoc solutions. These differential operators lead to edge fragments that are linked for high-level

geometric analysis, partitioning, and grouping. Nuclear regions provide context for quantitative protein

localization. When localization is not diffused, additional analysis is required to characterize punctate

signals. These punctate signals may vary in shape, scale, and intensity. Furthermore, they often overlap

and create additional complexity. These complexities are addressed through iterative spatial voting,

which is kernel-based, and its topography favors radial symmetries. It is robust with respect to variation

in size and intensity, and delineates overlapped compartments.

Organization of this paper is as follows. Section 2 outlines material and methods. Section 3 reviews

previous research. Section 4 summarizes geometric segmentation of the nuclear regions which provide the

context for protein localization. Section 5 outlines the spatial voting technique for protein localization.

Section 6 provides (1)the experimental results for 196 images, and (2) the comparison of the system
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performance against manual analysis.

2 Material and method

The model system for the cell culture is MCF-10A (ATCC, Manassas, VA) human mammary epithelial

cells (HMEC), which were grown in serum-free media as recommended by ATCC. Cells were irradiated

with 100cGy within 6 hours of seeding by using 320 KvP X-ray; control plates were processed identically

to irradiated plates. Media were supplemented with exogenous TGF-β(0.5 ng-per-ml) at plating and

centrosomal amplification was measured 22 hours post irradiation. Cells were methanol-fixed, blocked

with 0.5% casein and PBS, and centrosomes were detected with a mouse monoclonal antibody recogniz-

ing γ-tubulin (Sigma, St. Louis, MO). Co-staining with a rabbit polyclonal recognizing CENP-F, kindly

provided by G. Chan, University of Alberta, Canada, and previously characterized (Chani et al., 1999),

was used to determine cell cycle stage as indicated. Secondary antibodies (Molecular Probes, Carlsbad,

CA) were incubated sequentially for 1 h at RT, washed, and counterstained with DAPI before mounting

with Vectashield mounting medium (Vector Labs, Burlingame, CA). Image acquisition and processing

immunofluorescence images for in vitro analyses were obtained using a 40X objective with 1.3 numerical

aperture Zeiss Neofluar objective on a Zeiss Axiovert equipped with epifluorescence. Images were ac-

quired by locating nuclei using the DAPI image without reference to the fluorochrome-labeled γ-tubulin.

Centrosome number and structure were manually monitored as previously described (Pihan et al., 1998).

Cellular treatments were blind coded in order to avoid experimental bias.

3 Previous work

The difficulties in localization of subcellular compartments are often due to variations in scale, noise,

and topology. Other complexities originate from missing data and perceptual boundaries that lead to
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diffusion and dispersion of the spatial grouping in the object space. Techniques for extraction of nuclear

compartments are either through global thresholding or adaptive (localized) thresholding followed by

the watershed (Vincent & Soille, 1991) method for separating adjacent regions. Techniques in radial

symmetries, as evidenced by centrosome configuration, can be classified into three different categories:

(1) point operations leading to dense output, (2) clustering based on parameterized shape models or

voting schemes, and (3) iterative techniques. Point operations are usually a series of cascade filters

that are tuned for radial symmetries. These techniques use image gradient magnitudes and orientations

to infer the center of mass for regions of interest (Reisfeld et al., 1995; Reisfeld & Yeshurun, 1998;

Sela & Levine, 1997). Recent efforts have focused on speed and reliability (Loy & Zelinsky, 2003).

Parametric clustering techniques are often based on a variant of the Hough transform, e.g., circle or

ellipse finders. These techniques produce loci of points corresponding to the parametric models of well-

known geometries. These point distributions are then merged, and model parameters are refined (Duda

& Hart, 1972). Non-parametric clustering techniques operate along the gradient direction to search for

radial symmetry, using either line- or area-based search. Line-based search (Minor & Sklansky, 1981) is

also known as the spoke filter, where the frequency of occurrence of points normal to the edge direction is

aggregated. In contrast, area-based voting accumulates votes in a small neighborhood along the gradient

direction. An example of iterative method is the regularized centroid transform (RCT) (Yang & Parvin,

2003), which transports boundary points to the local center of mass iteratively. This can be classified

as curve-based voting, since the voting path is not along a straight line but along a minimum energy

path. Voting paths can be easily distorted by noise, local structures, and other singularities in the image,

and may lead to over-segmentation. Thus, the problem is often regularized at different levels through

either non-linear diffusion of random noise (Perona & Malik, 1990), non-linear diffusion of speckle noise

(Yang & Parvin, 2003), or enforcing smoothness of the path leading each point on the surface to its local

centroid (Yang & Parvin, 2003).
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The first two categories of radial symmetry detection can be summarized as follows. Interest-point

operators are fast and well-suited for detecting small features for higher levels of interpretation and ma-

nipulation. Parametric voting techniques are potentially memory-intensive, depending upon the dimen-

sionality of the parameter space, and remain sensitive to small deviations from the underlying geometric

model. Line- and area-based voting produce a voting space that is diffuse and subject to further ad hoc

analysis.

The method implemented here falls into the category of iterative techniques that are adaptive to

geometric perturbation and typically produce more stable results. This method shares several attributes

with tensor-based voting (Medioni et al., 2000), but it differs in that it is scalar and iterative.

4 Segmentation

In a typical 2D cell culture assay that is stained for nuclear compartment, some nuclei are isolated and

others are clustered together to form clumps. Thus, the strategy is to detect isolated ones first, and then

impose additional processing for the clumped regions. The image signature suggests that thresholding

may be sufficient as an initial step; however, shading, nonuniform staining, and other artifacts demands

a localized strategy. This localized strategy is an edge-based technique with a geometric convexity

optimization approach for improved reliability. Edges are collected to form contours and then tested for

convexity. If convexity fails then the clumped region is partitioned into multiple convex regions according

to a geometric policy. Contour division is initiated from points of positive maximum curvature that are

detected from contours. At the resolution that samples are imaged, showing the morphology of epithelial

cells (round cells) used in the experimental design, there is often a clear positive curvature maxima

where adjacent nuclei overlap. Curvature is often computed by convolving the contour with the first and

second derivative of a Gaussian kernel. The kernel scale (standard deviation) has to be matched with
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the resolution and numerical aperture of the objective for optimum performance.

4.1 Boundary extraction and convexity

Let I(x, y) be the original image with 2D image coordinates. An initial boundary is extracted by linking

zero-crossing edges that are filtered by the gradient magnitude at the same scale. Zero-crossing (computed

from Laplacian, ∇2I) assures that boundaries are closed, and the gradient threshold assures that spurious

contours are eliminated. Two gradient thresholds (low and high) are used to initiate linking from strong

edges and fill the gaps with weak edge points. Next, each computed contour is approximated with a

polygon and total angular change is computed to test for convexity. If the region is not convex then

additional processing is initiated.

4.1.1 Grouping and Partitioning

Partitioning of clumped nuclei into distinct convex objects is through iterative decomposition and con-

straint satisfaction. Intuitively, these partitions should be terminated by folds in the boundary corre-

sponding to positive curvature maxima. The main purpose of the constraint-based grouping is to limit

the number of hypotheses and reduce computational cost. The net result of this process is a set of

corresponding candidates for each positive curvature maxima point for potential decomposition. The

following geometric constraints are enforced.

Positive curvature constraint The curvature (Faux & Pratt, 1979) at any point along the contour

is given by k = δ
′

xδ
′′

y−δ
′

yδ
′′

x

(δ′x2+δ
′
y2)3/2

. The contour derivatives are computed by convolving derivatives of a

Gaussian with the contour information. The intent is to partition a clump of nuclei from the points of

maximum curvature along the contour.
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Antiparallel constraint The antiparallel constraint asserts that each pair of positive curvature max-

ima along the contour must be antiparallel, which is estimated by computing the tangent directions at

each candidate point. This constraint reduces the number of hypotheses for a potential partition thus

reducing the computational cost.

Non-intersecting constraint The non-intersecting constraint asserts that a partition cannot intersect

existing boundaries corresponding to the entire blob or other hypothesized partitions.

Convexity constraint The nuclear regions that occur in the cell culture are always convex, the

convexity constraint enforces that the partition obtained has to be convex to avoid incorrect segmentation.

Grouping and partitioning Each clump is partitioned by linking pairs of positive curvature maxima

that satisfy the above conditions. Each configuration has its own cost function, and the optimum

configuration satisfies all the above-mentioned constraints and will minimize

C = Σn
i=1

φi−Π
Π

(1)

where n is the number of partitions in a clump and φi is the convexity of the compartment, is determined

by the system as follows. Essentially, the problem is reduced to grouping of curvature maximas in such

a way that certain geometric constraints are satisfied.

Decomposition Algorithm

1. Localize positive curvature maxima along the contour

2. Set initial number of compartments n:= 2
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3. Construct a set of all valid configurations of n compartments by connecting valid pairs of positive

curvature maxima satisfying the antiparallel, non-intersecting and convexity constraints

4. Evaluate cost of each configuration (per Equation 1)

5. Increment the compartment count n:=n+1 and repeat steps 3 and 4 until there is at least one

configuration that has all convex compartments

6. Select the configuration with the least cost function

The algorithm outlined above can be used to partition varying numbers of touching blobs. Figure

1 shows three touching blobs and outlines the mechanism by which the various constraints elucidate

partition of touching nuclei. The decomposition of four touching nuclei in real data is shown in Figure

6e.

4.2 Experiment with noisy data

The sensitivity of the segmentation algorithm was tested by adding Gaussian additive noise to a synthetic

image. The amount of Gaussian noise was varied and the segmented area was measured against a known

ground truth area of 20697 pixels. The results of the segmentation is shown in Figure 3. It can be seen

that segmentation obtained is not affected by the presence of noise when Gaussian additive noise is varied

from 5% to 40%. Incorrect segmentation is obtained when Gaussian additive noise is varied above 50%.

The area obtained from segmentation is shown in Table 1.

5 Protein localization

The problem of localizing punctate protein expression was first evaluated using the Hough transform,

cross correlation against training samples, and analysis of local intensity distribution. Clustering based
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Graphical representation showing optimal partitioning by applying the constraints: (a) Visu-
alization of three touching blobs; (b) localize the positive curvature maxima; (c) anti-parallel constraint
to reduce number of hypotheses; (d)-(g) computed partition fails due to convexity constraint; (h) com-
puted partition fails due to non-intersecting constraint and (i) computed partition which satisfies all the
constraints.

Image Area in P ixels

Figure 3a 26228
Figure 3b 26228
Figure 3c 26228
Figure 3d 26228
Figure 3e 25905
Figure 3f 26228
Figure 3g 25896
Figure 3h 25912

Table 1: Image and corresponding computed area as a function of increasing noise
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(a) (b) (c) (d)

Figure 2: Steps in segmentation: (a) Zero-crossing of Laplacian; (b) gradient image; (c) points of maxi-
mum curvature along contours; and (d) partitioning of clumped nuclei.

on the Hough method proved to be scale-sensitive, while correlation and intensity-based methods suffer

from false positives and lack of geometric models. A geometric model is essential in the presence of scale-

varying and overlapping protein signals. A new type of spatial iterative voting is introduced to facilitate

these requirements (Yang & Parvin, 2004). Voting along gradient direction provides a hypothesis profile

for saliency, e.g., punctate protein events. A specific kernel design (1) encodes the knowledge for saliency,

(2) is applied at each edge location along the gradient direction, and (3) is refined and reoriented at each

iteration step. The shape and evolution of these kernels, inferring center of mass, is shown in Figure

4. A brief review of the technique is as follows: Let I(x, y) be the original image, where the domain

points (x, y) are 2D image coordinates. Let α(x, y) be the voting direction at each image point, where

α(x, y) := (cos(θ(x, y)), sin(θ(x, y))) for some angle θ(x, y) that varies with the image location. Let

{rmin, rmax} be the radial range and ∆ be the angular range. Let V (x, y; rmin, rmax,∆) be the vote image,

dependent on the radial and angular ranges and having the same dimensions as the original image. Let

A(x, y; rmin, rmax,∆) be the local voting area, defined at each image point (x, y) and dependent on the

11



radial and angular ranges, defined by

A(x, y; rmin, rmax,∆) := {(x ± r cos φ, y ± r sinφ) | rmin ≤ r ≤ rmax and

θ(x, y) − ∆ ≤ φ ≤ θ(x, y) + ∆}

(2)

Finally, let K(x, y;σ, α,A) be a 2D Gaussian kernel with variance σ, masked by the local voting area

A(x, y; rmin, rmax,∆) and oriented in the voting direction α(x, y). Figure 4 shows a subset of voting

kernels that vary in topography, scale, and orientation.

The iterative voting algorithm is outlined below for radial symmetry.

Iterative Voting

1. Initialize the parameters: Initialize rmin, rmax,∆max, and a sequence

∆max = ∆N < ∆N−1 < · · · < ∆0 = 0. Set n := N , where N is the number of iterations, and let

∆n = ∆max. Also fix a low gradient threshold, Γg and a kernel variance, σ, depending on the

expected scale of salient features.

2. Initialize the saliency feature image: Define the feature image F (x, y) to be the local external

force at each pixel of the original image. The external force is often set to the gradient magnitude

or maximum curvature, depending upon the type of saliency grouping and the presence of local

feature boundaries.

3. Initialize the voting direction and magnitude: Compute the image gradient, ∇I(x, y), and its

magnitude, ||∇I(x, y)||. Define a pixel subset S := {(x, y)| ||∇I(x, y)|| > Γg}. For each grid point

(x, y) ∈ S, define the voting direction to be

α(x, y) := −
∇I(x, y)

||∇I(x, y)||
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4. Compute the votes: Reset the vote image V (x, y; rmin, rmax,∆n) = 0 for all points (x, y). For each

pixel (x, y) ∈ S, update the vote image as follows:

V (x, y; rmin, rmax,∆n) := V (x, y; rmin, rmax,∆n) +

∑

(u,v)∈A(x,y;rmin,rmax,∆n) F (x − w
2 + u, y − h

2 + v)K(u, v;σ, α,A),

where w = max(u) and h = max(v) are the maximum dimensions of the voting area.

5. Update the voting direction: For each grid point (x, y) ∈ S, revise the voting direction. Let

(u∗, v∗) = arg max
(u,v)∈A(x,y;rmin,rmax,∆n)

V (u, v; rmin, rmax,∆n)

Let dx = u∗ − x, dy = v∗ − y, and

α(x, y) =
(dx, dy)

√

d2
x + d2

y

6. Refine the angular range: Let n := n − 1, and repeat steps 4-6 until n = 0.

7. Determine the points of saliency: Define the centers of mass or completed boundaries by

thresholding the vote image:

C = {(x, y) | V (x, y; rmin, rmax,∆0) > Γv}

An example of the application of radial kernels to overlapping objects is shown in Figure 5 together

with the intermediate results. The voting landscape corresponds to the spatial clustering that is initially

diffuse and subsequently refined and focused into distinct islands.
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6 Experimental results and conclusion

The algorithms presented in sections 4 and 5 have been packaged into a stand alone software tool for

routine quantitative studies. The tool has been used to study centrosomal abnormalities under different

treatment groups. Figure 6 shows the performance of the system on overlapping nuclear regions. It should

be noted that in some cases there is no intensity decay when adjacent nuclei overlap; watershed-based

techniques can fail to produce proper decomposition of nuclear compartments under these conditions. In

contrast, the proposed geometric approach is invariant to intensity distribution as a basis for decomposi-

tion. An example of localization of centrosomes through voting is shown in Figure 7, where a rare event

due to CA is captured in region 20 and region 45. Each punctate signal is assigned to the closest nuclear

boundary. A total of 196 images were processed to quantify the number of abnormal centrosomes for each

nucleus in the image. This result was then compared against manual count for validation, as shown in

Figure 8. The system’s error is at 1% and 10% for nuclear segmentation and quantitation of centrosome

abnormality, respectively. This is a significant improvement in productivity for high throughput analysis.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Segmentation of a synthetic object with added Gaussian noise: (a) no noise; (b) 5% additive
noise; (c) 10% additive noise; (d) 15% Gaussian additive noise; (e) 25% Gaussian additive noise; (f) 30%
Gaussian additive noise; (g) 40% Gaussian additive noise; (h) 50% Gaussian additive noise generates
additional fragments.
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(a) (b) (c) (d) (e)

Figure 4: Kernel topography: (a-e)The evolving kernel, used for the detection of radial symmetries
(shown at a fixed orientation), has a trapezoidal active area with Gaussian distribution along both axes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Detection of radial symmetries for a synthetic image simulating three overlapping centrosomes
(a protein event): (a) original image; (b)-(g) voting landscape at each iteration; and (h) final localization
of centers of mass.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Decomposition of overlapping nuclei and detection of punctate events corresponding to centro-
some complexes: (a) and (b) original DAPI stained nuclear images; (c) and (d) corresponding centrosome
signature; (e) and (f) segmentation and decomposition of nuclear compartments; (g) and (h) localized
centrosomes. Nuclear and centrosome regions are labeled with yellow and cyan colors respectively.
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(a) (b)

(c) (d)

Figure 7: Nuclear segmentation and centrosome localization indicates decomposition of overlapping
nuclear compartments and detection of nearby punctate events corresponding to centrosome: (a) original
nuclear image; (b) corresponding centrosomes image; (c) segmented nuclear compartments; and (d)
localized centrosomes. A rare event in nuclei 20 and 45 indicates four and three centrosomes, respectively.
Nuclear and centrosome regions are labeled with yellow and cyan colors, respectively. Ambiguities due to
adjacent and overlapping regions (both nuclear and centrosomes) are resolved. Furthermore, pertinent
events are measured in context. For example, centrosome abnormality of region 20 is referenced against
correct nuclear size of morphology. 19



(a) (b)

Figure 8: Comparative results of centrosome abnormality between manual and automated counting for
two separate treatments. Each chart shows manual (on the left) and automated quantitation (on the
right).
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